设为首页收藏本站

LUPA开源社区

 找回密码
 注册
文章 帖子 博客
LUPA开源社区 首页 业界资讯 开源资讯 查看内容

基于开源代码的人工智能机器人ELF OpenGo击败顶级人类玩家

2018-6-3 21:57| 发布者: joejoe0332| 查看: 3652| 评论: 0|原作者: oschina|来自: oschina

摘要: 最近在Facebook的F8开发者大会上宣布,ELF OpenGo机器人在赢得了最近与前30名人类玩家对阵的14场比赛后获得了专业地位。为了解决复杂的游戏问题和AI研究工作的民主化,Facebook的人工智能研究实验室(FAIR)团队创建 ...

最近在Facebook的F8开发者大会上宣布,ELF OpenGo机器人在赢得了最近与前30名人类玩家对阵的14场比赛后获得了专业地位。

为了解决复杂的游戏问题和AI研究工作的民主化,Facebook的人工智能研究实验室(FAIR)团队创建了ELF:一个用于游戏研究的广泛,轻量级和灵活的平台。ELF为研究人员提供了在各种游戏环境中测试其算法的机会,包括棋盘游戏,Atari游戏(通过Arcade学习环境)以及定制的实时策略游戏。它运行在支持GPU的笔记本电脑上,也支持在更复杂的游戏环境中训练AI,例如实时策略游戏,一天内仅使用6个CPU和一个GPU。

“我们向DeepMind的朋友们致敬,感谢他们做出了令人敬畏的工作,”Facebook首席技术官Mike Schroepfer说,“但是我们想知道:是否有一些未解决的问题?你还可以将这些工具应用于其他领域。“正如Facebook在今天的博客文章中所指出的那样。Facebook还开源了它的机器人。“为了让这项工作对全世界的AI研究人员都具有重现性和可用性,我们创建了一款名为ELF OpenGo的开源Go机器人,该机器人的性能足以回答AlphaGo未回答的一些关键问题,”该团队说。

ELF平台嵌入了实时策略引擎和称为Mini-RTS的环境。它的效率很高,就像游戏环境在Macbook Pro上每个核心每秒运行40,000帧一样。
它获得了实时策略游戏的主要动态。这两个玩家都会收集资源,建造设施,探索未知的领土(玩家看不见的地形),并试图控制地图上的区域。

有趣的是,引擎具有促进人工智能研究的特性:完美的保存/加载/重放,完全访问其内部游戏状态,多种内置的基于规则的AI,调试可视化以及人机界面等。简而言之,在Mini-RTS上接受培训的人工智能已经显示出很有希望的结果,70%的时间内击败了内置的AI代理,表明可以训练AI完成任务,并在相对复杂的战略环境中确定优先级。

通过ELF平台,团队正在开展研究,专注于帮助计算机开发处理指数行动空间,长期延迟奖励和不完整信息的方法。


酷毙

雷人

鲜花

鸡蛋

漂亮
  • 快毕业了,没工作经验,
    找份工作好难啊?
    赶紧去人才芯片公司磨练吧!!

最新评论

关于LUPA|人才芯片工程|人才招聘|LUPA认证|LUPA教育|LUPA开源社区 ( 浙B2-20090187 浙公网安备 33010602006705号   

返回顶部