搞大脑计划,一般都是一个非常庞大的团队,会进行大规模的标注和训练,对非限定领域的大数据大语料进行训练和开发,对各种智能化技术进行综合集成,这个做出来会很震撼,很酷。但小团队也有优势,可以比较轻灵,在特定领域,限定领域作出出色的应用,比如出门问问。还有另一种方式,就是游侠,他们不太可能大规模地推开业务,只会做一些核心技术,特别是顶层的建模。我一直主张,在一个自然语言处理系统里,语言学知识到底长什么样,决定了把后续的学习手段加上之后到底能够走多远,这个东西我想一个项目立项之时,这个思路就已经定了,后面再做也超不过先天局限。而恰恰是这个游侠方式,可以在这个地方走得更远。 总结一下我的主要观点:自然语言处理的核心关键问题还没有解决,但应用方面取得一些进展不是偶然的,有其走得对的地方。突破的钥匙掌握在语言学家或者是通晓语言学成果的人手里。最要害的试金石是两个:递归嵌套,远距相关,如能做到,说明对语言的深层处理能力有标志性的进步。我们认为后面有很多机会,不仅大脑计划有机会,游侠模式也有机会,统计走不下去的地方,规则抄底的机会也是存在的。最后说与人工智能的关联。虽然我是这样的题目,结论是自然语言处理和人工智能并没有强关联,而自然语言处理可以为人工智能的进步做一点点贡献,但是是比较微弱的。谢谢。 文章作者:白硕,博士,研究员,中国中文信息学会常务理事,信息检索与内容安全专业委员会主任委员,中国科学院计算所、信工所和中国科学院大学兼职博士生导师,上海证券通信有限责任公司董事长。曾长期从事自然语言处理、信息检索相关领域研究工作。目前主持轻便高效证券交易系统和证券行业云服务等证券领域信息技术应用研究。 稿源:福布斯中文网 |