下表表示了Event A和Event B之间的相互关系,其中: k11 :Event A和Event B共现的次数 则logLikelihoodRatio=2 * (matrixEntropy - rowEntropy - columnEntropy) 其中 rowEntropy = entropy(k11, k12) + entropy(k21, k22) (entropy为几个元素组成的系统的香农熵) 2. location-based 对于移动设备而言,与PC端最大的区别之一是移动设备的位置是经常发生变化的。不同的地理位置反映了不同的用户场景,在具体的业务中可以充分利用用户所处的地理位置。在推荐的候选集触发中,我们也会根据用户的实时地理位置、工作地、居住地等地理位置触发相应的策略。
区域消费热单 区域购买热单
3. query-based 搜索是一种强用户意图,比较明确的反应了用户的意愿,但是在很多情况下,因为各种各样的原因,没有形成最终的转换。尽管如此,我们认为,这种情景还是代表了一定的用户意愿,可以加以利用。具体做法如下:
4. graph-based 对于协同过滤而言,user之间或者deal之间的图距离是两跳,对于更远距离的关系则不能考虑在内。而图算法可以打破这一限制,将user与deal的关系视作一个二部图,相互间的关系可以在图上传播。Simrank[2]是一种衡量对等实体相似度的图算法。它的基本思想是,如果两个实体与另外的相似实体有相关关系,那它们也是相似的,即相似性是可以传播的。 5. 实时用户行为 目前我们的业务会产生包括搜索、筛选、收藏、浏览、下单等丰富的用户行为,这些是我们进行效果优化的重要基础。我们当然希望每一个用户行为流都能到达转化的环节,但是事实上远非这样。 当用户产生了下单行为上游的某些行为时,会有相当一部分因为各种原因使行为流没有形成转化。但是,用户的这些上游行为对我们而言是非常重要的先验知识。很多情况下,用户当时没有转化并不代表用户对当前的item不感兴趣。当用户再次到达我们的推荐展位时,我们根据用户之前产生的先验行为理解并识别用户的真正意图,将符合用户意图的相关deal再次展现给用户,引导用户沿着行为流向下游行进,最终达到下单这个终极目标。 目前引入的实时用户行为包括:实时浏览、实时收藏。 6. 替补策略 虽然我们有一系列基于用户历史行为的候选集触发算法,但对于部分新用户或者历史行为不太丰富的用户,上述算法触发的候选集太小,因此需要使用一些替补策略进行填充。
|