Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作。
Caffe是纯粹的C++/CUDA架构,支持命令行、Python和MATLAB接口;可以在CPU和GPU直接无缝切换: Caffe::set_mode(Caffe::GPU);
Caffe的优势- 上手快:模型与相应优化都是以文本形式而非代码形式给出。
Caffe给出了模型的定义、最优化设置以及预训练的权重,方便立即上手。 - 速度快:能够运行最棒的模型与海量的数据。
Caffe与cuDNN结合使用,测试AlexNet模型,在K40上处理每张图片只需要1.17ms. - 模块化:方便扩展到新的任务和设置上。
可以使用Caffe提供的各层类型来定义自己的模型。 - 开放性:公开的代码和参考模型用于再现。
- 社区好:可以通过BSD-2参与开发与讨论。
Caffe的网络定义Caffe中的网络都是有向无环图的集合,可以直接定义: name: "dummy-net"
layers {<span><span>name: <span>"data" …</span></span></span>}
layers {<span><span>name: <span>"conv" …</span></span></span>}
layers {<span><span>name: <span>"pool" …</span></span></span>}
layers {<span><span>name: <span>"loss" …</span></span></span>} 数据及其导数以blobs的形式在层间流动。
Caffe的各层定义Caffe层的定义由2部分组成:层属性与层参数,例如name:"conv1"
type:CONVOLUTION
bottom:"data"
top:"conv1"
convolution_param{
num_output:<span>20
kernel_size:5
stride:1
weight_filler{
type: "<span style="color: #c0504d;">xavier</span>"
}
} 这段配置文件的前4行是层属性,定义了层名称、层类型以及层连接结构(输入blob和输出blob);而后半部分是各种层参数。
Blob Blob是用以存储数据的4维数组,例如
- 对于数据:Number*Channel*Height*Width
- 对于卷积权重:Output*Input*Height*Width
- 对于卷积偏置:Output*1*1*1
训练网络网络参数的定义也非常方便,可以随意设置相应参数。 甚至调用GPU运算只需要写一句话: solver_mode:GPU Caffe的安装与配置 Caffe需要预先安装一些依赖项,首先是CUDA驱动。不论是CentOS还是Ubuntu都预装了开源的nouveau显卡驱动(SUSE没有这种问题),如果不禁用,则CUDA驱动不能正确安装。以Ubuntu为例,介绍一下这里的处理方法,当然也有其他处理方法。 生成mnist-train-leveldb/ 和 mnist-test-leveldb/,把数据转化成leveldb格式: 训练网络: # sudo vi/etc/modprobe.d/blacklist.conf
# 增加一行 :blacklist nouveau
sudoapt-get --purge remove xserver-xorg-video-nouveau #把官方驱动彻底卸载:
sudoapt-get --purge remove nvidia-* #清除之前安装的任何NVIDIA驱动
sudo service lightdm stop #进命令行,关闭Xserver
sudo kill all Xorg 安装了CUDA之后,依次按照Caffe官网安装指南安装BLAS、OpenCV、Boost即可。
Caffe跑跑MNIST试试在Caffe安装目录之下,首先获得MNIST数据集: cd data/mnist
sh get_mnist.sh 生成mnist-train-leveldb/ 和 mnist-test-leveldb/,把数据转化成leveldb格式: cd examples/lenet
sh create_mnist.sh 训练网络: sh train_lenet.sh
让Caffe生成的数据集能在Theano上直接运行不论使用何种框架进行CNNs训练,共有3种数据集: - Training Set:用于训练网络
- Validation Set:用于训练时测试网络准确率
- Test Set:用于测试网络训练完成后的最终正确率
Caffe生成的数据分为2种格式:Lmdb和Leveldb- 它们都是键/值对(Key/Value Pair)嵌入式数据库管理系统编程库。
- 虽然lmdb的内存消耗是leveldb的1.1倍,但是lmdb的速度比leveldb快10%至15%,更重要的是lmdb允许多种训练模型同时读取同一组数据集。
- 因此lmdb取代了leveldb成为Caffe默认的数据集生成格式。
Google Protocol Buffer的安装Protocol Buffer是一种类似于XML的用于序列化数据的自动机制。 首先在Protocol Buffers的中下载最新版本: https://developers.google.com/protocol-buffers/docs/downloads 解压后运行: ./configure
$ make
$ make check
$ make install
pip installprotobuf 添加动态链接库export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH Lmdb的安装pip install lmdb 要parse(解析)一个protobuf类型数据,首先要告诉计算机你这个protobuf数据内部是什么格式(有哪些项,这些项各是什么数据类型的决定了占用多少字节,这些项可否重复,重复几次),安装protobuf这个module就可以用protobuf专用的语法来定义这些格式(这个是.proto文件)了,然后用protoc来编译这个.proto文件就可以生成你需要的目标文件。 想要定义自己的.proto文件请阅读: https://developers.google.com/protocol-buffers/docs/proto?hl=zh-cn 编译.proto文件protoc--proto_path=IMPORT_PATH --cpp_out=DST_DIR --java_out=DST_DIR--python_out=DST_DIR path/to/file.proto --proto_path 也可以简写成-I 是.proto所在的路径
输出路径:
--cpp_out 要生成C++可用的头文件,分别是***.pb.h(包含申明类)***.pb.cc(包含可执行类),使用的时候只要include “***.pb.h”
--java_out 生成java可用的头文件
--python_out 生成python可用的头文件,**_pb2.py,使用的时候import**_pb2.py即可
最后一个参数就是你的.proto文件完整路径。
Caffe (CNN, deep learning) 介绍Caffe -----------Convolution Architecture For Feature Embedding (Extraction) - Caffe 是什么东东?
- CNN (Deep Learning) 工具箱
- C++ 语言架构
- CPU 和GPU 无缝交换
- Python 和matlab的封装
- 但是,Decaf只是CPU 版本。
为什么要用Caffe? - 运算速度快。简单 友好的架构 用到的一些库:
- Google Logging library (Glog): 一个C++语言的应用级日志记录框架,提供了C++风格的流操作和各种助手宏.
- lebeldb(数据存储): 是一个google实现的非常高效的kv数据库,单进程操作。
- CBLAS library(CPU版本的矩阵操作)
- CUBLAS library (GPU 版本的矩阵操作)
Caffe 架构
- 预处理图像的leveldb构建
输入:一批图像和label (2和3) 输出:leveldb (4) 指令里包含如下信息:- conver_imageset (构建leveldb的可运行程序)
- train/ (此目录放处理的jpg或者其他格式的图像)
- label.txt (图像文件名及其label信息)
- 输出的leveldb文件夹的名字
- CPU/GPU (指定是在cpu上还是在gpu上运行code)
CNN网络配置文件 - Imagenet_solver.prototxt (包含全局参数的配置的文件)
- Imagenet.prototxt (包含训练网络的配置的文件)
- Imagenet_val.prototxt (包含测试网络的配置文件)
Caffe深度学习之图像分类模型AlexNet解读在imagenet上的图像分类challenge上Alex提出的alexnet网络结构模型赢得了2012届的冠军。要研究CNN类型DL网络模型在图像分类上的应用,就逃不开研究alexnet,这是CNN在图像分类上的经典模型(DL火起来之后)。 在DL开源实现caffe的model样例中,它也给出了alexnet的复现,具体网络配置文件如下train_val.prototxt 接下来本文将一步步对该网络配置结构中各个层进行详细的解读(训练阶段): 各种layer的operation更多解释可以参考 Caffe Layer Catalogue 从计算该模型的数据流过程中,该模型参数大概5kw+。 conv1阶段DFD(data flow diagram):
conv2阶段DFD(data flow diagram):
conv3阶段DFD(data flow diagram):
conv4阶段DFD(data flow diagram):
conv5阶段DFD(data flow diagram):
fc6阶段DFD(data flow diagram):
fc7阶段DFD(data flow diagram):
fc8阶段DFD(data flow diagram):
|