伴随着数据的爆炸性增长和成千上万的机器集群,我们需要使算法可以适应在如此分布的环境下运行。在通用的分布式计算环境中运行机器学习算法具有一系列的挑战。本文探讨了如何在一个Hadoop集群中实现和部署深度学习。
波士顿的 数据科学团队正在利用尖端工具和算法来优化商业活动,且这些商业活动是基于对用户数据中的深刻透析。数据科学大量使用机器算法,可以帮助我们在数据中识别和利用模式。从互联网大规模数据中获取透析是一项具有挑战性的任务,因此,能大规模运行算法是一个至关重要的需求。伴随着数据的爆炸性增长和成千上万的机器集群,我们需要使算法可以适应在如此分布的环境下运行。在通用的分布式计算环境中运行机器学习算法具有一系列的挑战。 这里,我们探讨一下如何在一个Hadoop集群中实现和部署深度学习(一个尖端机器学习框架)。对于算法是如何适应运行在一个分布式环境中,我们提供了具体的细节。我们也给出了算法在标准数据集上的运行结果。 深度信任网络 深度信任网络(Deep Belief Networks, DBN)是在贪婪和无监督的条件下通过迭代和训练受限的玻耳兹曼机(Boltzmann Machines, RMB)而得到的图形模型。通过对如下可被观察的维度x和隐藏层hk之间相互连接的分布式进行建模,DBN被训练来提取训练数据的深层透析。
表达式1:DBN分布式 在下图中,输入层和隐藏层的关系是可以被观察到的。从高层次来看,第一层被作为RBM来训练,为原始输入x进行建模。输入的数据是个稀疏二进制维度,表明数据将会被分类,比如,一个二进制的数字图像。后续层把前面的层传递过来的数据(样本或activations)当作训练示例使用。层数可以通过经验来决定,以此来获得更好的模型性能,DBN支持任意多的层数。
图1:DBN层次 下面的代码片段表明了进入RBM的训练。在提供给RBM的输入数据中,有多个预定义的时间点。输入数据被分成小批量数据,为各个层计算weights、activations和deltas。
在所有的层都被训练以后,深度网络的参数调整使用受监督的训练标准。受监督的训练标准,比如,可以作为一个分类问题来设计,允许使用深度网络来解决分类问题。更复杂的受监督的标准可以用来提供如情景解读之类的有趣的结果,比如解释图片里展示的东西是什么。 |