11)kaggle-blackbox ,作者Zając,53星 ,这是2013年Kaggle无监督学习竞赛的一个实现 。它实现了一个随机森林算法和一个稀疏滤波算法。语言是Matlab,也可以用Octave跑。文档和说明参见 http://bigdata.memect.com/?tag=kaggle-blackbox 10) libdeep 这是个C的实现,目前54星。在Linux上可以安装到系统库,然后就可以在其他项目里调用了。如果追求性能,这是个好选择。http://bigdata.memect.com/?p=10462 9) OpenDL 这是个很新的实现, 是基于spark的。语言是Java。除了spark还用到了Mallet机器学习包和JBlas线性代数包。http://bigdata.memect.com/?p=10345 更多spark参考请看大数据精华区的专题 http://memect.co/FUdsSH9 。 8) UFLDL-tutorial ,作者Dan Luu,94星 ,这是斯坦福深度学习公开课和 Andrew Ng’s UFLDL(无监督特征学习和深度学习)教程的所有练习的解答。代码是Matlab的,作者声称对Octave兼容,所以理论上甚至可以从python调用。非常适合入门。http://bigdata.memect.com/?p=10423 UFLDL教程 @邓侃 曾组织翻译成了中文,入门必读 http://deeplearning.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B。
7) rbm-mnist 这个是hinton matlab代码( http://memect.co/r12f-q6 )的C++改写,189星。它还实现了Rasmussen的共轭梯度Conjugate Gradient算法。http://bigdata.memect.com/?p=10327 |