首先要考虑 totatives的值 p: 6 17 totatives 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17&|@* table totatives 17 +--+-----------------------------------------------+ | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16| +--+-----------------------------------------------+ | 1| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16| | 2| 2 4 6 8 10 12 14 16 1 3 5 7 9 11 13 15| | 3| 3 6 9 12 15 1 4 7 10 13 16 2 5 8 11 14| | 4| 4 8 12 16 3 7 11 15 2 6 10 14 1 5 9 13| | 5| 5 10 15 3 8 13 1 6 11 16 4 9 14 2 7 12| | 6| 6 12 1 7 13 2 8 14 3 9 15 4 10 16 5 11| | 7| 7 14 4 11 1 8 15 5 12 2 9 16 6 13 3 10| | 8| 8 16 7 15 6 14 5 13 4 12 3 11 2 10 1 9| | 9| 9 1 10 2 11 3 12 4 13 5 14 6 15 7 16 8| |10|10 3 13 6 16 9 2 12 5 15 8 1 11 4 14 7| |11|11 5 16 10 4 15 9 3 14 8 2 13 7 1 12 6| |12|12 7 2 14 9 4 16 11 6 1 13 8 3 15 10 5| |13|13 9 5 1 14 10 6 2 15 11 7 3 16 12 8 4| |14|14 11 8 5 2 16 13 10 7 4 1 15 12 9 6 3| |15|15 13 11 9 7 5 3 1 16 14 12 10 8 6 4 2| |16|16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1| +--+-----------------------------------------------+ 和 17&|@+ table 0 , totatives 17 +--+--------------------------------------------------+ | | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16| +--+--------------------------------------------------+ | 0| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16| | 1| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0| | 2| 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1| | 3| 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2| | 4| 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3| | 5| 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4| | 6| 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5| | 7| 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6| | 8| 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7| | 9| 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8| |10|10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9| |11|11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10| |12|12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11| |13|13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12| |14|14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13| |15|15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14| |16|16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15| +--+--------------------------------------------------+ 最后, 考虑到定义powers 来提高totatives到欧拉力. powers =: 3 : '(totatives y.) (y.&| @ ^) / i. 1 + totient y.' powers 12 1 1 1 1 1 1 5 1 5 1 1 7 1 7 1 1 11 1 11 1 powers 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 4 8 16 15 13 9 1 2 4 8 16 15 13 9 1 1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1 1 4 16 13 1 4 16 13 1 4 16 13 1 4 16 13 1 1 5 8 6 13 14 2 10 16 12 9 11 4 3 15 7 1 1 6 2 12 4 7 8 14 16 11 15 5 13 10 9 3 1 1 7 15 3 4 11 9 12 16 10 2 14 13 6 8 5 1 1 8 13 2 16 9 4 15 1 8 13 2 16 9 4 15 1 1 9 13 15 16 8 4 2 1 9 13 15 16 8 4 2 1 1 10 15 14 4 6 9 5 16 7 2 3 13 11 8 12 1 1 11 2 5 4 10 8 3 16 6 15 12 13 7 9 14 1 1 12 8 11 13 3 2 7 16 5 9 6 4 14 15 10 1 1 13 16 4 1 13 16 4 1 13 16 4 1 13 16 4 1 1 14 9 7 13 12 15 6 16 3 8 10 4 5 2 11 1 1 15 4 9 16 2 13 8 1 15 4 9 16 2 13 8 1 1 16 1 16 1 16 1 16 1 16 1 16 1 16 1 16 1 5.5 多项式在这部分我们将讨论多项式的表示和操作。多项式由它的系数决定,所以我们将多项式表示成一个升序的列表而不是通常的降序。例如,多项式被表示为了5 2 0 1. 多项式求值,我们采用如下表示: peval =: (#. |.) ~ 5 2 0 1 peval 3 38 p.用来表示多项式求值。 5 2 0 1 p. 3 38 多项式的加减转化为针对同类项系数的加减: psum =: , @ (+/ @ ,: & ,:) pdif =: , @ (-/ @ ,: & ,:) 1 2 psum 1 3 1 2 5 1 3 psum 1 3 1 4 3 1 1 2 pdif 1 3 1 0 _1 _1 下面我们考虑多项式的积和衍生的多项式。如果我们使用乘积表,同类项的系数在表的斜对角线倾斜。倾斜副词/.可以访问这些对角线上的值。 pprod =: +/ /. @ (*/) 1 2 pprod 1 3 1 1 5 7 2 pderiv =: 1: }. ] * i. @ # pderiv 1 3 3 1 3 6 3 p.. 1 3 3 1 NB. There is a primitive for derivative 3 6 3 |