最近这两年推荐系统特别火,本文搜集整理了一些比较好的开源推荐系统,即有轻量级的适用于做研究的SVDFeature、LibMF、LibFM等,也有重 量级的适用于工业系统的 Mahout、Oryx、EasyRecd等,供大家参考。PS:这里的top 10仅代表个人观点。
主页:http://svdfeature.apexlab.org/wiki/Main_Page 语言:C++
一个feature-based协同过滤和排序工具,由上海交大Apex实验室开发,代码质量较高。在KDD Cup 2012中获得第一名,KDD Cup 2011中获得第三名,相关论文 发表在2012的JMLR中,这足以说明它的高大上。
SVDFeature 包含一个很灵活的Matrix Factorization推荐框架,能方便的实现SVD、SVD++等方法, 是单模型推荐算法中精度最高的一种。SVDFeature代码精炼,可以用 相对较少的内存实现较大规模的单机版矩阵分解运算。另外含有Logistic regression的model,可以很方便的用来进行ensemble。
主页:http://www.csie.ntu.edu.tw/~cjlin/libmf/ 语言:C++
作者Chih-Jen Lin来自大名鼎鼎的台湾国立大学,他们在机器学习领域享有盛名,近年连续多届KDD Cup竞赛上均 获得优异成绩,并曾连续多年获得冠军。台湾大学的风格非常务实,业界常用的LibSVM, Liblinear等都是他们开发的,开源代码的效率和质量都非常高。
LibMF 在矩阵分解的并行化方面作出了很好的贡献,针对SGD(随即梯度下降)优化方法在并行计算中存在的locking problem和memory discontinuity问题,提出了一种 矩阵分解的高效算法FPSGD(Fast Parallel SGD),根据计算节点的个数来划分评分矩阵block,并分配计算节点。系统介绍可以见这篇 论文(ACM Recsys 2013的 Best paper Award)。
主页:http://www.libfm.org/ 语言:C++
作者是德国Konstanz大学的Steffen Rendle,他用LibFM同时玩转KDD Cup 2012 Track1和Track2两个子竞赛单元,都取得了很好的成绩,说明LibFM是非常管用的利器。
LibFM 是专门用于矩阵分解的利器,尤其是其中实现了MCMC(Markov Chain Monte Carlo)优化算法,比常见的SGD优化方法精度要高,但运算速度要慢一些。当然LibFM中还 实现了SGD、SGDA(Adaptive SGD)、ALS(Alternating Least Squares)等算法。
主页:http://lenskit.grouplens.org/ 语言Java
这个Java开发的开源推荐系统,来自美国的明尼苏达大学的GroupLens团队,也是推荐领域知名的测试数据集Movielens的作者。
该源码托管在GitHub上,https://github.com/grouplens/lenskit。 主要包含lenskit-api,lenskit-core, lenskit-knn,lenskit-svd,lenskit-slopone,lenskit-parent,lenskit-data- structures,lenskit-eval,lenskit-test等模块,主要实现了k-NN,SVD,Slope-One等 典型的推荐系统算法。