设为首页收藏本站

LUPA开源社区

 找回密码
 注册
文章 帖子 博客
LUPA开源社区 首页 业界资讯 开源资讯 查看内容

13个让大象飞起来的开源工具

2014-1-2 13:15| 发布者: joejoe0332| 查看: 3725| 评论: 0|原作者: 仲浩|来自: CSDN

摘要: Hadoop是由Apache基金会开发的一个大数据分布式系统基础架构,最早版本是2003年原Yahoo! Doug Cutting根据Google发布的学术论文研究而来。用户可以在不了解分布式底层细节的情况下,轻松地在Hadoop上开发和运行处理 ...
  Hadoop是由Apache基金会开发的一个大数据分布式系统基础架构,最早版本是2003年原Yahoo! Doug Cutting根据Google发布的学术论文研究而来。用户可以在不了解分布式底层细节的情况下,轻松地在Hadoop上开发和运行处理海量数据的应用程序。低成本、高可靠、高扩展、高有效、高容错等特性让Hadoop成为最流行的大数据分析系统,然而其赖以生存的HDFS和MapReduce组件却让其一度陷入困境——批处理的工作方式让其只适用于离线数据处理,在要求实时性的场景下毫无用武之地。因此,各种基于Hadoop的工具应运而生,本次为大家分享Hadoop生态系统中最常用的13个开源工具,其中包括资源调度、流计算及各种业务针对应用场景。首先,我们看资源管理相关。

  资源统一管理/调度系统


  在公司和机构中,服务器往往会因为业务逻辑被拆分为多个集群,基于数据密集型的处理框架也是不断涌现,比如支持离线处理的MapReduce、支持在线处理的Storm及Impala、支持迭代计算的Spark及流处理框架S4,它们诞生于不同的实验室,并各有所长。为了减少管理成本,提升资源的利用率,一个共同的想法产生——让这些框架运行在同一个集群上;因此,就有了当下众多的资源统一管理/调度系统,比如Google的Borg、Apache的YARN、Twitter的Mesos(已贡献给Apache基金会)、腾讯搜搜的Torca、 Facebook Corona(开源),本次为大家重点介绍Apache Mesos及YARN:


1. Apache Mesos

代码托管地址: Apache SVN

Mesos提供了高效、跨分布式应用程序和框架的资源隔离和共享,支持Hadoop、 MPI、Hypertable、Spark等。

Mesos是Apache孵化器中的一个开源项目,使用ZooKeeper实现容错复制,使用Linux Containers来隔离任务,支持多种资源计划分配(内存和CPU)。提供Java、Python和C++ APIs来开发新的并行应用程序,提供基于Web的用户界面来提查看集群状态。


2. Hadoop YARN

代码托管地址: Apache SVN

YARN又被称为MapReduce 2.0,借鉴Mesos,YARN提出了资源隔离解决方案Container,但是目前尚未成熟,仅仅提供 Java 虚拟机内存的隔离。

对比MapReduce 1.x,YARN架构在客户端上并未做太大的改变,在调用 API 及接口上还保持大部分的兼容,然而在YARN中,开发人员使用 ResourceManager、ApplicationMaster 与 NodeManager代替了原框架中核心的 JobTracker 和 TaskTracker。其中 ResourceManager 是一个中心的服务,负责调度、启动每一个 Job 所属的 ApplicationMaster,另外还监控 ApplicationMaster 的存在情况;NodeManager负责 Container 状态的维护,并向 RM 保持心跳。ApplicationMaster 负责一个 Job 生命周期内的所有工作,类似老的框架中 JobTracker。


  Hadoop上的实时解决方案


  前面我们有说过,在互联网公司中基于业务逻辑需求,企业往往会采用多种计算框架,比如从事搜索业务的公司:网页索引建立用MapReduce,自然语言处理用Spark等。本节为大家分享的则是Storm、Impala、Spark三个框架: 


3. Cloudera Impala

代码托管地址: GitHub

Impala是由Cloudera开发,一个开源的Massively Parallel Processing(MPP)查询引擎 。与Hive相同的元数据、SQL语法、ODBC驱动程序和用户接口(Hue Beeswax),可以直接在HDFS或HBase上提供快速、交互式SQL查询。Impala是在Dremel的启发下开发的,第一个版本发布于2012年末。

Impala不再使用缓慢的Hive+MapReduce批处理,而是通过与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分组成),可以直接从HDFS或者HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。


4. Spark

代码托管地址: Apache

Spark是个开源的数据分析集群计算框架,最初由加州大学伯克利分校AMPLab开发,建立于HDFS之上。Spark与Hadoop一样,用于构建大规模、低延时的数据分析应用。Spark采用Scala语言实现,使用Scala作为应用框架。

Spark采用基于内存的分布式数据集,优化了迭代式的工作负载以及交互式查询。与Hadoop不同的是,Spark和Scala紧密集成,Scala像管理本地collective对象那样管理分布式数据集。Spark支持分布式数据集上的迭代式任务,实际上可以在Hadoop文件系统上与Hadoop一起运行(通过YARN、Mesos等实现)。


5. Storm

代码托管地址: GitHub

Storm是一个分布式的、容错的实时计算系统,由BackType开发,后被Twitter捕获。Storm属于流处理平台,多用于实时计算并更新数据库。Storm也可被用于“连续计算”(continuous computation),对数据流做连续查询,在计算时就将结果以流的形式输出给用户。它还可被用于“分布式RPC”,以并行的方式运行昂贵的运算。



酷毙

雷人

鲜花

鸡蛋

漂亮
  • 快毕业了,没工作经验,
    找份工作好难啊?
    赶紧去人才芯片公司磨练吧!!

最新评论

关于LUPA|人才芯片工程|人才招聘|LUPA认证|LUPA教育|LUPA开源社区 ( 浙B2-20090187 浙公网安备 33010602006705号   

返回顶部