随着 Shard0 修复,第三台成功上线,进而添加了更多的 Shard 服务器,现在数据已经更加的均衡,通过在Slave上运行 repairDatabase(),然后将其切换到 Master ,每台 Shard 内存占用缩减到 20GB左右。整个故障时间已经延续了 11 小时之多。 产生问题的主要原因就是系统过载,前面介绍每台 Shard 承载原来 50% 的压力,到了问题发生的时候,单台 Shard 的负载已经超过 Shard 之前的系统负载,这时候已经积重难返了,在容量的临界点增加新系统资源,必然导致更多的停机时间。暴露了 Foursquare 团队在容量规划方 面的不足之处,或许也因为业务增长太快了吧。另外,内存碎片化的问题在没有宕机之前,技术团队应该没考虑过这个问题,如果文档的大小超过 4K,碎片化问题就不严重了,这是特定应用场景造成的特定问题。10Gen 现在已经着手研究如何进在线压缩(online compaction)。再次,Shard 键值的顺序和插入顺序是不同的,这造成了迁移数据的时候 Chunk 的迁移不是连续的。 冯大辉认为这个案例能够带给我们很大启示: 最近 NoSQL 已经成为一个热词,类似 MongoDB 这样的新事物当然值得尝试,但是不能冒进,因为驾驭起来并非易事。仅仅能够使用是不够的,系统没出问题一切都好,一旦出了异常,有足够的技术力量(设想一 下 Foursquare 得不到 10gen 团队的支持会如何?) 支持么?在极端情况下如何控制? 如果回答不了这个问题,那么还应该暂缓。最好的办法就是..."等待"。 |